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ENERGY AND LAPLACIAN SPECTRUM OF C4Cs(S) NANOTORI AND
NANOTUBE
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The spectrum of a finite graph is by definition the spectrum of the adjacency matrix, that
is, its set of eigenvalues together with their multiplicities. The sum of the absolutes of
these eigenvalues is the energy of graph. The Laplace spectrum of a finite undirected
graph without loops is the spectrum of the Laplace matrix. There are some topological
indices related the Laplacian spectrum. In this paper, using a mathematical model for
C4Cy(S) that introduced in Ref.[26], we write a MATHEMATICA program to compute the
energy and Laplacian spectrum of molecular graph of arbitrary C,Cg(S) nanotori and
nanotube.
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1. Introduction

A topological index is a real number related to a structural graph of a molecule. It does not
depend on the labeling or pictorial representation of a graph. In recent years there has been
considerable interest in the general problem of determining topological indices of nanotubes,
nanotori and fullerenes. It has been established, for example, that the Wiener and hyper-Wiener
indices of polyhex nanotubes and tori are computable from the molecular graph of these structures.
Accordingly, some of the interest has been focused on computing topological indices of these
nanostructures .

Let G be a undirected graph without directed and multiple edges, and without loops, the
vertex and edge-sets of which are presented by V(G) and E(G), respectively. The adjacency matrix
of G is the 0-1 matrix A=A(G)=/a;/ indexed by the vertex set V(G) of G, where a;=1 when ij is an
edge and =, and 0 otherwise. This matrix characterizes a graph up to isomorphism. It allows the
reconstruction of a graph and is a symmetric matrix. The Laplacian matrix of G is the matrix
L=L(G)=[l;] indexed by the vertex set of G, with zero row sums, where L;=-a; for i = j. If
D=D(G)=/d;] is the diagonal matrix, indexed by the vertex set of G such that d;; is the degree of i,
then L=D-A.

The Laplacian matrix is sometimes also called the Kirchhoff matrix® of a graph because of
its role in the matrix-tree theorem® implicit’ in the work of Kirchhoff’. And sometimes L(G) is
called the combinatorial Laplacian, to distinguish it from the normalized Laplacian earlier noted in
connection with random walks.

The Laplacian matrix is a real symmetric matrix, so that diagonalization of the Laplacian
matrix of a graph (molecule) G with N vertices (atoms) gives N real eigenvalues u,(G), i=1,2,...,N.
The smallest eigenvalue of the Laplacian spectrum is always 0, as a consequence of the special
structure of the Laplacian matrix. The sum of these eigenvalues is the trace of L, which is twice the
number of edges of G. The uses of the Laplacian matrix, its characteristic polynomial, its
eigenspectrum, and related invariants have been explored in chemistry for at least the last decade”
20 There are many problems in physics and chemistry where the Laplacian matrices of graphs and
their spectra play the central role. Some of the applications are mentioned in *'.
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A graph G is called regular of degree k, when every vertex has precisely & neighbors. If G
is regular of degree k, then for every eigenvalue 6 we have | 8 | <k and L(G)=kI-A(G). 1t follows
that if G has ordinary eigenvalues k= 0,>0,>...> Oy and Laplace eigenvalues 0=u,;< p,<...< uy,
then 0;=k- y, for i=1,2,..., N. Moreover k is the largest eigenvalue of G, and its multiplicity equals
the number of connected components of G.

The Quasi-Wiener index, ', defined as W'=N ZL 1/ A, , where 4, i=2,...,N denotes the

positive eigenvalues of the Laplacian matrix™'’.

The eigenvalues of the Laplacian matrix are used in calculating the number of spanning
trees, t#(G), in graph. We know that if G be an undirected graph with Laplacian matrix L(G) and
N

II H;

eigenvalues 0=u;< 1:<...< uy, then the number of spanning trees of G, equals * #(G)= i .
N

Moreover Mohar defined two topological indices, 7/; and 77, on the ground of Laplacian spectrum
TI; =2N log(Q/N) Z:\izl/,u[ and 71,=4/(N u;), where Q is the number of edges.

The eigenvalues of adjacency matrix A(G) are called eigenvalues of graph G *. Following
Ivan Gutman *, the energy, E(G), of a molecular graph G is defined to be the sum of the absolutes
of the eigenvalues of G. We encourage the reader to consult papers **** and references therein for
background material as well as basic computational techniques.

A C,Cgnet is a trivalent decoration made by alternating squares C, and octagons Cs. It can
cover either a cylinder or a torus. Such a covering can be derived from a square net by the leapfrog
operation®. Optimized C,Cs net covering a nanotube is illustrated in Figure 1. A nanotorus is a
nanotube whose ends are connected.

Fig.1. TUC,Cy(S).
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Fig.2. Two-dimensional lattice of nanotube G,=TUC,Cy(S) [4,5].
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2. Results and discussions

Description of molecular graphs of nanotori and nanotubes

A carbon nanotorus may be described as a long rolled-up graphite sheet bent around to the
form of torus. Let G;=TRC,Cy(S)[p,q] and G,=TUC,Cs(S)/p,q] be the molecular graphs of
C4Cs(S) nanotorus and nanotube, in which p and ¢ are the number of octagons in vertical and
horizontal directions, respectively, Figure 2. Note that the graph G; has exactly 8pg vertices and is
a 3-regular graph and so the Laplacian matrix of this graph is L(G;)=3I-A(G;) where [ is the
8pq x8pq identity ~ matrix. Arezoomand and Taeri’®proved  that  the set

(={(a,B,r,0)eZ" | f+y+5e{0l},a+y+5e€{0]1}} is a mathematical model for
vertices of C4Cy(S) lattice and the mapping f : /x{ —> N, f(u,v) = z;| u, —v, | is a distance

function on the set of lattice vertices and give us the minimum distance between two vertices u and
v. We assume that a; denotes (i,j)-entry of two-dimensional lattice of G, as shown in Figure 2. We
put the origin point O at the a,; and consider the vectors ey, €, €, and e;.

Consider the pOil’ltS a=ajj, b:(121, c=asy, d=a41=0, e=dajy, f=a22, g=as; and h=a42. It is
easy to see that every point of G, can be constructed by a translation of these points in two
directions v=_2¢j-e,+e; and w=2e;-e,-e3. This is the content of lemma below.

Lemma 1. Assume that a;, /< i< 4p and I< j< 2q, denotes the (ij)-entry of the two-
dimensional lattice of G, as shown in the Fig.2, in our model we have

a, i=1(mod4),j odd or i =3(mod4), j even

y

a; i =1(mod4), j even or i =3(mod4), j odd
“ 7 4} i=2(mod4). j odd or i=0(mod4), ] even M
a, i=2(mod4),; even or i =0(mod4), j odd
where
a;. =(j-1) ept(i-3)/2 e;+(7-i-2j)/4 e;+(3-i+2j)/4 e,
a; =(j-1) eyt (i-3)/2 e;+(9-i-2))/4 ex+(1-i+2j)/4 e;,
a; =(j-1) eg*(i-4)/2 e;+(8-i-2))/4 ex+(-i+2j)/4 e;
and

a; =(-1) eg*(i-4)/2 e +(6-i-2))/4 ex+(2-i+2))/4 es.

Proof. 1t is easy to see that the lattice points of G, lie in T UT,U...UTs, where
T, ={a+ (i-1)/4 w+ (-1)/2 v | i=] (mod 4), j odd}
T, = {et+ (i-1)/4 w+ (j/2-1) v | i=1 (mod 4), j even}
T5 = {b+ (i-2)/4 w+ (j-1)/2 v | i=2 (mod 4), j odd}
T, ={f+ (i-2)/4 w+ (j/2-1) v | i=2 (mod 4), j even}
Ts = {c+ (i-3)/4 w+ (j-1)/2 v | i=3 (mod 4), j odd}
Ts = {g+ (i-3)/4 w+ (j/2-1) v | i=3 (mod 4), j even}
T, = {d+ (i/4-1) w+ (-1)/2 v | i=0 (mod 4), j odd}
Ts = {h+ (i/4-1) w+ (j/2-1) v | i=0 (mod 4), | even)
By considering the coordinates of the points a, b, ¢, d, e, f, g, h and the vectors v, w we can see that
the relation (1) holds.
Note that in the C4Cg(S) net the nearest neighbors of vertex v=(v;,v,,v;v,) are

1

V2 (vi+e1(v), va, v, vy

V.= (v, v2 T &2(v), v3, vy (1)
V= (v, vo, vs ten(v), ve + e3(v)

where

£, = ()"
£,() = (D
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) &,(v) if vy+vi+v,=v, +v;—v,
&,(v) =
! 0 otherwise

&,(v) if v, +vi+v, v, +v, -V,
ey, (v) = .
0 otherwise
By above notations, it is obvious that if we fix p and ¢, then V(G,)=V(G,) and E(G,)=E(G;)
U {aja,,,;11<j<2q;.
By the geometry of nanotori we have

: (and so a = a,, ) when i=2 or 3 (mod 4)

ail = 12q

2 _ _ .
a,; =a,, ;(and so alj = a4p7j) for all j.

Note that we can compute the other neighbors of these vertices and all of neighbors of other
vertices by relations (1).

A MATHEMATICA program for computing the adjacency and Laplacian matrices of G; and G».
Now we are ready to write a MATHEMATICA program for computing the adjacency and
Laplacian matrices of C,Cs(S) nanotori and nanotubes. Using these two important matrices we can
compute some topological indices. In the output of our program V=V(G,)=V(G,), Al and A2 are
the adjacency matrices of G; and G, respectively. Also L1 and L2 are the Laplacian matrices of G;
and G, respectively and Eigl, Eig2 are the set of their eigenvalues. Finally D2 is the degree
matrix of G,.

p=4; q=5;(* for example*)

a=1{0,-1,1,1};b={0,-1,1,0}; ¢c={0,0, 1, 0}; d = {0, } e={l,-1,1,1};f={1,-1,0,
1};g=1{1,0,0,1}; h={1,0,0, 0};v={2,0, -1, 1}; w= {0, -1};
V={}
For[i=1, i< 4p,
For[j=1, j< 2q,

I[flMod[i,4]==1 && 0OddQ][j], AppendTo[V, a+ (i-1)/4w+ (j-1)/2v]];
IflMod[i,4]==1 && EvenQ][j], AppendTo[V, e+ (i-1)/4w+ (j/2-1)v]];
I[flMod[i,4]==2 && 0OddQ([j], AppendTo[V, b+ (i-2)/4w+ (j-1)/2v]];
I[f[Mod[i,4]==2 && EvenQ[j], AppendTo[V, f+ (i-2)/4w+ (j/2-1)v]];
If[Mod[1,4]==3 && 0OddQ][j], AppendTo[V, ¢+ (i-3)/4w+ (j-1)/2V]];
IflMod[i,4]==3 && EvenQ][j], AppendTo[V, g+ (i-3)/4w+ (j/2-1)v]];
If[Mod[i, 4]——0 && 0ddQJj], AppendTo[V, d+ (i/4-1)w+ (j-1)/2v]];
If[Mod[i,4
It
i++];
= Table[x[i, j], {1, 1, 8p*q}, {j, 1, 8p*q}];
fflu_, v_] :=Sum[Abs[u[[i]] - V[[i]]], {i, 1, 4}];
For[i=1,1< 8p*q,
For[j =1, < 8p*q,
HTHTVIGL VIO == 1 x[4, j]1= 1, x[i, j] = 0];
il
i++];
For[i=1,1< 2q,
X[i, (8p-2)q +i] = 1;
x[(8p-2)q+1i,i] = 1;
i++];
For[i=0,1<p-1,
x[(8i+2)q+1,(8it4)q] = 1;
x[(8i+4)q, (8i+2)q+1]=1;
x[(8i+4)q+1,(8i+6)q]=1;

==0 && EvenQJj], AppendTo[V, h+ (i/4-1)w+ (j/2-1)v]];



x[(8i+6)q, (8i+4)q+1]=1;
i-H-];
A2 = Table[z[i, j], {i, 1, 8p*q}, {j, 1, 8p*q}];
For[i= 1, i< 8p*q,
For[j =1, < 8p*q,

IV, VIO == 1, z[i, jl = 1, 2[i, j] = 0];

It
i++];
For[i=0,1<p-1,
z[(8i+2)*q+1,(8i+4)*q] = 1;
ZA(8i+4)*q, (8i+2)*q+1] = 1;
ZA(8i+4)*q+1,(81+6)*q1=1;
z[(81+6)*q, (8i+d)*q+1]=1;
i+t];
D2 = Table[dd[1, j], {i, 1, 8p*q}, {j, 1, 8p*q}];
B=A2.A2;
For[i =1, i< 8p*q,
Forfj =1, j= 8p*q,
Ifi= =, dd[i,j =BG, dd[i,j)=0]
j]
i++]
L1=3*IdentityMatrix[8p*q] - Al;
L2=D2-A2;
Eigl=Eigenvalues[L1]//N
Eig2=Eigenvalues[L2]//N

Topological indices and energy of nanotori and nanotube
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It is easy to see that |E(G,)|= 12pq and so |E(G>)|=12pgq-2q. Note that MATHEMATICA arranges
the Laplacian eigenvalues decreasing. So if we append these below lines to the program, then we
have numerical values of the topological indices W', TI;, T1,, the number of spanning trees #(G), u,

(as defined in the section 1) and energy of nanotori and nanotube :

(*for nanotori*)
Eigl[[8p*q-1]]

QuasiWienerl = 8p*q*Sum[1/Eigl[[i]], {1, 1, 8p*q - 1}]

tG1=Product[Eig![[i]], {i, 1, 8p*q - 1}1/(8p*q)

TIIG1 =16p*q*Log[4/3]*Sum[1/Big![[i]], {i, 1, 8p*q - 1}]

TI2G1 =4/(8p*q*Eigl[[8p*q - 1]])
El1=Eigenvalues[A1];
EnG1=Sum[Abs[E1][[i]]],{i,1,8p*q} |//N
(*for nanotube*)

Eig2[[8p*q-1]]

QuasiWiener2=8p*q*Sum[1/Eig2[[i]], {i, 1, 8p*q - 1}]

tG2=Product[Eig2[[i]], {i, 1, 8p*q - 1}]/(8p*q)

TI1G2=16p*q*Log[4/3-1/(4p)]*Sum[1/Eig2[[i]], {i, 1, 8p*q - 1}]
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Tablel. Numerical data for nanotorus G;=TRC,Cs(S)[p.q].

%

(X)) 17} \ud t(G) TI, TL, Energy
(2,2) | 0.585786 | 550.476 | 6.04231x10" | 316.724 | 0.213388 | 47.5717
(2,3) | 0267949 | 1431.07 | 1.58582x10'® | 823.386 | 0.311004 | 70.4683
(2,4) | 0.152241 | 2887.15 | 3.68402x10%" | 1661.16 | 0.410533 | 94.9648
(2,5) | 0.097887 | 5046.16 | 8.02232x10% | 2903.38 | 0.510793 | 118.667
(2,6) | 0.0681483 | 8036.07 | 1.67705x10*? | 4623.67 | 0.611411 | 141.951
(2,7) | 0.0501442 | 11984.9 | 3.40847x10"7 | 6895.67 | 0.712232 | 166.048
(2,8) | 0.0384294 | 17020.6 | 6.78606x10% | 9793.03 | 0.813179 | 189.752
(3.2) | 0.267949 | 1431.07 | 1.58582x10'° | 823.386 | 0.311004 | 70.4683
(3,3) | 0267949 | 3472.83 | 2.78463x10** | 1998.14 | 0.207336 | 105.091
(3,4) | 0.152241 | 6681.15 | 4.17439x10% | 3844.09 | 0.273689 | 141.202
(3,5) | 0.097887 | 11240.5 | 5.84076x10% | 6467.38 | 0.340529 | 176.487
(3,6) | 0.0681483 | 17340.5 | 7.84154x10® | 9977.1 | 0.407608 | 211.343
(5,2) | 0.097887 | 5046.16 | 8.02232x10% | 2903.38 | 0.510793 | 118.667
(5,3) | 0.097887 | 11240.5 | 5.84076x10% | 6467.38 | 0.340529 | 176.487
(5,4) | 0.097887 | 20573.1 | 3.12427x10°* | 11837 | 0.255397 | 235.557
(5,5) | 0.097887 | 33369.5 | 1.49478x10% | 19199.6 | 0.204317 | 294.493

Table2. Numerical data for nanotube G,=TUC,Cg(S)[p.q].

*

p,9) W, \%Y t(G) TI, TI, Energy
(2,2) |0.152241 | 768.834 | 6.25766x10° | 290.991 | 0.821067 | 45.5573
(2,3) | 0.152241 | 1873.15 | 1.8522x10" | 708.975 | 0.547378 | 68.0914
(2,4) | 0.152241 | 3656.07 | 4.61365x10"" | 1383.76 | 0.410533 | 90.3743
(2,5) | 0.097887 | 624233 | 1.06635x10™ |2362.62 | 0.510793 | 113.593
(2,6) | 0.0681483 | 9757.05 |2.36124x10*° | 3692.89 | 0.611411 | 136.419
(2,7) | 0.0501442 | 14326.9 | 5.08126x10°° | 5422.5 0.712232 | 159.025
(2,8) | 0.0384294 | 20079.4 | 1.07106x10* |7599.75 | 0.813179 | 181.503
(3,2) |0.0681483 |2079.59 | 1.09013x10" | 928.094 | 1.22282 |69.5174
(3,3) | 0.0681483 | 4639.42 |2.07274x10*" |2070.51 | 0.815215 | 103.625
(3,4) | 0.0681483 | 8587.9 3.05379x10% | 3832.67 | 0.611411 | 138.068
(3,5) | 0.0681483 | 14131.3 | 4.05566x10*° | 6306.62 | 0.489129 | 172.728
(3,6) | 0.0681483 | 21459.5 | 5.10528x10* | 9577.08 | 0.407608 | 206.981
(5,2) | 0.0246233 | 7833.78 | 3.30835x10** | 3908.44 | 2.0306 116.802
(53) | 0.0246233 | 15752.5 | 2.59415x10°7 | 7859.26 | 1.35373 | 174.045
(5,4) |0.0246233 | 272383 | 1.32995x10° | 13589.8 | 1.0153 231.991
(5,5) | 0.0246233 | 42748.7 | 5.74189x10% | 21328.3 | 0.812238 |290.519
(5,6) | 0.0246233 | 62673.6 | 2.27372x10" | 31269.2 | 0.676865 | 348.268

TI2G2=4/(8p*q*Eig2[[8p*q - 1]])

E2=Eigenvalues[A2];

EnG2=Sum[Abs[E2[[i]]],{i,1,8p*q} //N

We give a numerical data for these indices, number of spanning trees and energies of the graphs
G; and G, in Tables 1, 2. After running the above programs, we can guess some conjectures as
follows:

Conjecturel. After running our program in many cases for p and g, we guess that the characteristic
polynomial of Laplacian matrix of G; is of the form f(x) = (x— £4)“ (x — 14,)“ ..(x — g1,)*
where 0=u;<u,<...<p=06 are distinct eigenvalues of Laplacian matrix with multiplicity a;, /< i<k,
respectively, Z; a, =|V(G))|, a,=a=1 and for I<j < [k/2], o+ 1=0.

Conjecture?. If we fix p and g, then we have E(G;)>E(G,), where E(G) is the energy of graph G.
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3. Conclusions

In this work, we give a MATHEMATICA program for calculating two important matrices
adjacency and Laplacian of arbitrary C4Cs(S) nanotorus and nanotubes. Many structural properties
of these nanostructures are depending to these matrices. The molecular graph of these structures is
given as an algebraic definition. Similarly one can write simple MATHEMATICA program and
compute many topological indices related with these matrices, such as Randic index, Zagreb group
indices, etc. Moreover according Huckel theory we can equate the eigenvectors of the adjacency
matrix for atomic orbitals in the construction of molecular orbitals. Also we can use the
eigenvectors for analyze some physico-chemical properties and interesting intra-and inter-
molecular ordering (for more details see Refs. [27, 28]) .
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