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The m-order connectivity index ( )m G of a graph G  is  
1 2 1

1
2( ... ) ,

mi i id d d



 where 

1 2 1
...

mi i id d d


runs over all paths of length m in G  and  id  denotes the degree of vertex iv . 

A dendrimer is an artificially manufactured or synthesized molecule built up from 
branched units called monomers. In this paper, we compute 2- and 3-order connectivity 
index of an infinite family of polyphenylene dendrimer. 
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1.  Introduction 
 
      A simple graph G = (V,E) is a finite nonempty set V(G) of objects called vertices 

together with a (possibly empty) set E(G) of unordered pairs of distinct vertices of G called edges. 
In chemical graphs, the vertices of the graph correspond to the atoms of the molecule, and the 
edges represent the chemical bonds. 

A single number which characterizes the graph of a molecular is called a graph theoretical 
invariant or topological index. Among the many topological indices considered in chemical graph, 
only a few have been found noteworthy in practical application, connectivity index is one of them. 
The connectivity index is one of the most popular molecular-graph. This index has been used in a 
wide spectrum of applications ranging from predicting physicochemical properties such as boiling 
point and solubility partition. The molecular connectivity index  provides a quantitative 
assessment of branching of molecules.  Randic (1975) first addressed the problem of relating the 
physical properties of alkanes to the degree of branching across an isomeric series [6]. The degree 
of branching of a molecule was quantified using a branching index which subsequently became 
known as first- order molecular connectivity index . Kier and Hall (1986) extended this to higher 
orders and introduced modifications to account for heteroatoms [4]. 

Molecular connectivity indices are the most popular class of indices (Trinajastic, 1992). 
They have been used in a wide spectrum of applications ranging from predicting physicochemical 
properties such as boiling point, solubility partition, coefficient etc, (Murray et al., 1975; Kier and 
Hall, 1976) for predicting biological activities such as antifungal effect, an esthetic effect, enzyme 
inhibition etc, (Kier et al., 1975; Kier and Murray, 1975) [4]. 

Let G  be a simple connected graph of order n. For an integer m ≥ 1, the m-order 
connectivity index of an organic molecule whose molecule graph G  is defined as 
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where 1 1... mi i   runs over all paths of length m  in G  and id denote the degree of vertex .iv In 

particular, 2-order connectivity index and 3-order connectivity index are defined as follows: 
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Dendrimers are hyper-branched macromolecules, with a rigorously tailored architecture. 
They can be synthesized, in a controlled manner, either by a divergent or a convergent procedure. 
Dendrimers have gained a wide range of applications in supra-molecular chemistry, particularly in 
host guest reactions and self-assembly processes. Their applications in chemistry, biology and 
nano-science are unlimited. Recently, some researchers investigated m-order connectivity indices 
of some dendrimer nanostars, where m = 2 and 3 (see [1,2,3,7]). In this paper, we shall study the 2- 
and 3-order connectivity index of an infinite family of polyphenylene dendrimers.  

 
2.  Second-order and third-order connectivity index of dendrimer 
 
In this section, we shall study the 2-order and 3-order connectivity index of a dendrimer. 

We consider polyphenylene dendrimer by construction of generations nG  with n growth stages. 

We denote this graph by 4[ ]D n .  Figure 1 shows the generations 2G  with 2 growth stages. 

 
 
 
 
 
 
 
 
 
 
 
 
                            
            
 
 
 
 
 
 
 
 
 
 
                   Fig. 1.  Polyphenylene dendrimer of generations Gn  with 2 growth stages. 
 
The following theorem gives the 2-order connectivity index of polyphenylene dendrimer.     

Theorem 1.  Let n  N. Then, the 2-order connectivity index of 4[ ]D n  is given by   

             
2 1

4

1 19 2 67 3
( [ ]) (198 2 152 3 6 6 9) ( )(2 4).

9 2 9
nD n            
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Proof.  First we compute 2
4( [1]).D  Let 

1 2 3i i id denote the number of 2-paths whose three 

consecutive vertices are of degree 1 2 3, , ,i i i respectively. In the same way, we use  
1 2 3

( )n
i i id  to mean 

1 2 3i i id  in n th stages. Particularly, 
1 2 3 3 2 1

( ) ( )n n
i i i i i id d . 

We can see that  

         
(1)
222 48d  , (1)

223 48d  , (1)
232 24d  , (1)

233 56d  , (1)
323 4d  , (1)

333 44d  , (1)
234 8d  , (1)

343 6.d   

 
Therefore, we have   

2
4

48 48 24 56
( [1])

2 2 2 2 2 3 2 3 2 2 3 3
D    

       
         

                   
4 44 8 6

3 2 3 3 3 3 2 3 4 3 4 3
   

         

             

1
(198 2 152 3 6 6 9).

9
     

Now, we construct the relation between 2
4( [ ])D n and 2

4( [ 1])D n   for 2.n   
By simple reduction, we have 

    
( ) ( 1)
222 222 18 2 ,n n nd d    ( ) ( 1)

223 223 20 2 ,n n nd d    ( ) ( 1)
232 232 10 2 ,n n nd d    ( ) ( 1)

233 233 28 2 ,n n nd d         

    ( ) ( 1)
323 323 2 2 ,n n nd d    ( ) ( 1)

333 333 22 2 ,n n nd d     

and for any 1 2 3( ) (222), (223), (232), (233), (323), (333), (234), (343),i i i  we have 
1 2 3

( ) 0.n
i i id   

Therefore  

2 2
4 4

18 2 20 2
( [ ]) ( [ 1])

2 2 2 2 2 3

n n

D n D n   
   

   
10 2 28 2

2 3 2 2 3 3

n n 
  

         

                                          

2 2 22 2

3 2 3 3 3 3

n n 
 

   
 

                 2
4

19 2 67 3
( [ 1]) ( ) 2 .

2 9
nD n      

From above recursion formula, we have  

  

2 2
4 4

19 2 67 3
( [ ]) ( [ 1]) ( ) 2

2 9
nD n D n       

                   

2 1
4

19 2 67 3
( [ 2]) ( )(2 2 )

2 9
n nD n     

 

                     
  

                   2 1 2
4

19 2 67 3
( [1]) ( )(2 2 ... 2 )

2 9
n nD        

    2 1
4

1 19 2 67 3
( [ ]) (198 2 152 3 6 6 9) ( )(2 4).

9 2 9
nD n       

 
The proof  is now complete.   ▄

 

 
The following theorem gives the 3-order connectivity index of polyphenylene dendrimer.     

 
Theorem 2.  Let n  N. Then, the 3-order connectivity index of 4[ ]D n  is given by  

       

3
4

1
( [ ]) (216 104 6 6 3 18 2)

9
D n     11

(99 46 6)(2 4).
9

n    
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Proof.  Let 
1 2 3 4i i i id denote the number of 3-paths whose four consecutive vertices are of degree 

1 2 3 4, , , ,i i i i  respectively. With the same way, we use  
1 2 3 4

( )n
i i i id  to mean 

1 2 3 4i i i id  in n th stages. It is 

clear that 
1 2 3 4 4 3 2 1

( ) ( )n n
i i i i i i i id d .  

Similar to Theorem 1, we first compute 3
4( [1])D . We can see that  

   
(1)
2222 32d  , (1)

2223 32d  , (1)
2232 48d  , (1)

2233 40d  , (1)
2332 16d  , (1)

2333 72d  , (1)
3233 16d  ,  , 

(1)
3223 8d  ,   

  (1)
3333 48d  , (1)

2234 8d  , (1)
2343 24.d   

 
Thus, 
  

3
4( [1])G 32 32 48 40

2 2 2 2 2 2 2 3 2 2 3 2 2 2 3 3
    

           
 

                      
16 72 16 8

2 3 3 2 2 3 3 3 3 2 3 3 3 2 2 3
   

           
  

                  
48 8 24

3 3 3 3 2 2 3 4 2 3 4 3
 

           

                

1
(216 104 6 6 3 18 2).

9
     

Now, we compute 3
4( [ ])D n . 

The relations between 
1 2 3 4

( )n
i i i id and  1 2 3 4

( 1)n
i i i id   for 2n  are   

   
( ) ( 1)
2222 2222 12 2n n nd d    , ( ) ( 1)

2223 2223 12 2n n nd d    , ( ) ( 1)
2232 2232 20 2n n nd d    , 

( ) ( 1)
2233 2233 20 2n n nd d    ,   

  ( ) ( 1)
2332 2332 8 2n n nd d    , ( ) ( 1)

2333 2333 36 2n n nd d    , ( ) ( 1)
3233 3233 8 2n n nd d    , ( ) ( 1)

3223 3223 4 2n n nd d    ,  

  ( ) ( 1)
3333 3333 24 2 ,n n nd d      

and for any 1 2 3 4( ) (2222),(2223),(2232),(2233),(2332), (2333),(3233)i i i i    
, (3223), (3333), (2234), (2343),  we have 

1 2 3 4

( ) 0.n
i i i id   

Therefore,  

3 3
4 4

12 2 12 2 20 2
( [ ]) ( [ 1])

2 2 2 2 2 2 2 3 2 2 3 2

n n n

D n D n    
    

           
20 2 8 2 36 2

2 2 3 3 2 3 3 2 2 3 3 3

n n n  
  

        
8 2 4 2 24 2

3 2 3 3 3 2 2 3 3 3 3 3

n n n  
  

        
 

               

                 

3
4

1
( [ 1]) (99 46 6) 2

9
nD n      

             
    

3 1
4

1
( [ 2]) (99 44 6)(2 2 )

9
n nD n     

 

                          
  

    
             

3 1 2
4

1
( [1]) (99 44 6)(2 2 ... 2 )

9
n nD     

 
So, 
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3
4

1
( [ ]) (216 104 6 6 3 18 2)

9
D n     11

(99 46 6)(2 4).
9

n  
 

The proof  is now complete.  ▄ 
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