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Let Gbe a graph. The matrix DD = [ddij], in which ddij is defined as the length of the 
longest path between vertices i and j is called the detour matrix of G. In this paper exact 
formulae for the detour index of armchair polyhex and TUC4C8(R) nanotubes with 
exactly one row are computed.  
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1. Introduction 
 
Carbon nanotubes are molecular-scale tubes of graphitic carbon with outstanding 

properties. They are among the stiffest and strongest fibres known, and have remarkable 
electronic properties and many other unique characteristics. For these reasons they have attracted 
huge academic and industrial interest, with thousands of papers on nanotubes being published 
every year. Commercial applications have been rather slow to develop, however, primarily 
because of the high production costs of the best quality nanotubes.  

Graph theory was successfully provided the chemist with a variety of very useful tools, 
namely, the topological index. A topological index is a numeric quantity from the structural 
graph of a molecule. The term “topological index” was first proposed by Hosoya1 for 
characterizing the topological nature of a graph. The first topological index was proposed in 1947 
by the chemist Harold Wiener.2 Topological index is an integer quite easily obtained from a 
graph by a specified recipe. It can be used to evaluate structural similarity and diversity. Its main 
role is to work as a numerical molecular descriptor in QSAR/QSPR model.  

There are hundreds of molecular descriptors. For example, the program CODESSA 
evaluates some 400 graph theoretical descriptors and quantum chemical parameters for molecules 
to be considered in a structure-property-activity study.3  

A graph is a mathematical object and can be represented either in a geometrical or 
algebraic way. In the algebraic way, we consider a matrix named, adjacency matrix of the graph 
under consideration. This matrix is defined as A = [aij], where aij = 1, for an adjacent pair vi and 
vj, and 0 otherwise. Here V(G) = {v1,v2, …, vn} and E(G) = {e1, e2, …, em} are the set of all 
vertices and edges of G, respectively. If G is given, then A is uniquely determined, and vice 
versa. 

The detour matrix DD = [ddij] can be defined for G with entries ddii = 0 and ddij, i≠j, as 
the maximum distance between vertices vi and vj. If a graph G is given, the matrix D can be 
reproduced. The detour matrix was introduced in graph theory some time ago by F. Harary4 for 
describing the connectivity in directed graphs. The detour matrix, in contrast to the distance 
matrix that records the length of the shortest path between vertices, records the length of the 
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longest distance between each pair of vertices. The detour index is defined as the sum of entries 
in matrix has recently received some attention in the chemical literature. 

The most important works on the geometric structures of nanotubes, nanotori and their 
topological indices was done by Diudea and his co-authors.5-11 One of the present authors (ARA) 
computed the Wiener, PI and Szeged indices of some nanotubes.12-17  

The aim of this paper is to compute the detour matrix and then detour index of some 
special case of armchair polyhex and TUC4C8(R) nanotubes, Figure 1. For a real number x, [x] 
denotes the greatest integer ≤ x. Our notation is standard and is taken mainly from the standard 
books of graph theory.  

 
 
2. Main Results 
 
In this section, the detour index of an armchair polyhex nanotube and a TUC4C8(R) 

nanotube with exactly one row are computed, Figures 1 and 2.  
 
Theorem A. Suppose T is the benzenoid chain of Figure 1. Then the (6i+r,6j+s)th entry of  
Detour matrix of T, 1 ≤ r,s ≤ 6, is as follows: 
 

 6j+1 6j+2 6j+3 6j+4 6j+5 6j+6 
6i+1 4(j-i) 4(j-i)+5 4(j-i)+5 4(j-i)+4 4(j-i)+4 4(j-i)+3 
6i+2 4(j-i)+1 4(j-i)+6 4(j-i)+6 4(j-i)+5 4(j-i)+5 4(j-i)+4 
6i+3 4(j-i)+1 4(j-i)+6 4(j-i)+6 4(j-i)+5 4(j-i)+5 4(j-i)+4 
6i+4 4(j-i)+2 4(j-i)+7 4(j-i)+7 4(j-i)+6 4(j-i)+6 4(j-i)+5 
6i+5 4(j-i)+2 4(j-i)+7 4(j-i)+7 4(j-i)+6 4(j-i)+6 4(j-i)+4 
6i+6 4(j-i)+3 4(j-i)+2 4(j-i)+2 4(j-i)+1 4(j-i)+1 4(j-i) 

 
Proof. We first compute the length of a maximum path between the vertex labelled 6i+1 and a 
vertex of the (k+1)th hexagon. To do this, it is enough to compute the length of a maximum path 
between 6i+1 and u = 6k+2, v = 6k+4 and w = 6k+6, Figure 1. Then we can see that the 
following are maximum path between, 6i+1 and x, x ∈ {u, v, w}: 
6i+1-u: 6i+1, 6i+2, 6i+4, 6i+6, 6i+7,…, 6k+1, 6k+3, 6k+5, 6k+6, 6k+4, 6k+2, 
6i+1-v: 6i+1, 6i+2, 6i+4, 6i+6, 6i+7,…, 6k+1, 6k+3, 6k+5, 6k+6, 6k+4, 
6i+1-w: 6i+1, 6i+2, 6i+4, 6i+6, 6i+7,…, 6k+1, 6k+3, 6k+5, 6k+6. 
 Then dd(6i+1)u = 4(k-i)+5, dd(6i+1)v = 4(k-i)+4 and dd(6i+1)w = 4(k-i)+3. By symmetry of this 
graph, dd(6i+1)x = dd(6i+1)u and dd(6i+1)y = dd(6i+1)v. On the other hand the length of a maximum path 
between 6i+1 and 6k+1 is 4(k-i). This completes the entries of the rth row, r ≡ 1 (mod 6). By 
symmetry, it is enough to compute the length of a maximum path between r and s, r ∈ {2,4,6} 
and s ∈ {6k+2,6k+4,6k+6}. The following are a maximum path between, r and s, r ∈ {6i+2, 
6i+4, 6i+6} and s ∈ {6k+2,6k+4,6k+6}: 
 
6i+2-u: 6i+2, 6i+1, 6i+3, 6i+5, 6i+6, 6i+7,…, 6k+1, 6k+3, 6k+5, 6k+6, 6k+4, 6k+2, 
6i+2-v: 6i+2, 6i+1, 6i+3, 6i+5, 6i+6, 6i+7,…, 6k+1, 6k+3, 6k+5, 6k+6, 6k+4, 
6i+2-w: 6i+2, 6i+1, 6i+3, 6i+5, 6i+6, 6i+7,…, 6k+1, 6k+3, 6k+5, 6k+6. 
6i+4-u: 6i+4, 6i+2, 6i+1, 6i+3, 6i+5, 6i+6, 6i+7,…, 6k+1, 6k+3, 6k+5, 6k+6, 6k+4, 6k+2, 
6i+4-v: 6i+4,6i+2, 6i+1, 6i+3, 6i+5, 6i+6, 6i+7,…, 6k+1, 6k+3, 6k+5, 6k+6, 6k+4, 
6i+4-w: 6i+4,6i+2, 6i+1, 6i+3, 6i+5, 6i+6, 6i+7,…, 6k+1, 6k+3, 6k+5, 6k+6. 
6i+6-u: 6i+6, 6i+7,…, 6k+1, 6k+3, 6k+5, 6k+6, 6k+4, 6k+2, 
6i+6-v: 6i+6, 6i+7,…, 6k+1, 6k+3, 6k+5, 6k+6, 6k+4, 
6i+6-w: 6i+6, 6i+7,…, 6k+1, 6k+3, 6k+5, 6k+6. 
This completes calculation of detour matrix.                                                              
 
Corollary. If T is the benzenoid chain of Figure 1, then dd(T) = 3p(8p2 + 24p – 11). 
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Proof. The proof is straightforward and follows from Theorem 1.                                  
 
Theorem B. Suppose S is an armchair polyhex nanotube with exactly one row and p hexagons. 
Then the (6i+r,6j+s)th entry of detour matrix of T, 1 ≤ s ≤ 6 and r ∈ {1,2,4,6}, is as follows: 
 

 6j+1 6j+2, 6j+3 6j+4, 6j+5 6j+6 p 
6i+1 4(p-j+i) 4(p-j+i)+1 4(p-j+i)+2 4(p-j+i)-3 j-i ≤ [p/2] 
6i+1 4(j-i) 4(j-i)+5 4(j-i)+4 4(j-i)+3 j-i ≥ [p/2] 
6i+2 4(p-j+i)+5 4(p-j+i)+6 4(p-j+i)+7 4(p-j+i)+2 j-i ≤ [p/2] 
6i+2 4(j-i)+1 4(j-i)+6 4(j-i)+5 4(j-i)+4 j-i ≥ [p/2] 
6i+4 4(p-j+i)+4 4(p-j+i)+5 4(p-j+i)+6 4(p-j+i)+1 j-i ≤ [p/2] 
6i+4 4(j-i)+2 4(j-i)+7 4(j-i)+6 4(j-i)+5 j-i ≥ [p/2] 
6i+6 4(p-j+i)+3 4(p-j+i)+4 4(p-j+i)+5 4(p-j+i) j-i ≤ [p/2] 
6i+6 4(j-i)+3 4(j-i)+2 4(j-i)+1 4(j-i) j-i ≥ [p/2] 

 
Proof. Suppose S has exactly p hexagon. Consider two cases that k ≤ [p/2] and k ≥ [p/2]. We first 
assume that k ≤ [p/2]. To compute the length of a maximum path between u and 6i+r, r ∈ {1, 2, 
4, 6}, it is enough to calculate the length of a maximum path between r and u−6i.  
 Suppose u = 6k+2 is a vertex in the (k+1)th hexagon of S, Figure 2. Then 
1,6p+5,6p+3,6p+1,6p,…..,6k+6,6k+5,6k+3,6k+1,6k+2 is a maximum path between 1 and u and 
so dd1-u = 4(p-k). For u = 6k+4 and 6k+6, we have the following maximum paths between 1 and 
u, respectively: 
1,6p+5,6p+3,6p+1,6p,…,6k+6,6k+5,6k+3,6k+1,6k+2,6k+4, 
1,6p+5,6p+3,6p+1,6p,…,6k+6. 
 These paths has lengths 4(p-k)+5 and 4(p-k) + 4, respectively. For u = 6k+1, clearly there 
exists a maximum path of length 4(p-k). Choose r = 2. Then 
2,4,6,5,3,1,6p+5,6p+3,6p+1,6p,…,6k+6,6k+5,6k+3,6k+1 is a maximum path of length 4(p-k)+5 
between r and 6k+1. To calculate the length of a maximum path between 2 and 6k+2, 6k+4 and 
6k+6, its is enough to consider above path between 2 and 6k+1 and then add a maximum path 
between 6k+1 and 6k+s, s ∈ {2, 4, 6}. Therefore dd2-(6k+2) = 4(p-k) + 6, dd2-(6k+4) = 4(p-k) + 5 and 
dd2-(6k+6) = 4(p-k) + 4. If r =4, 6 then 4, 6, 5, 3, 1, 6p+5, 6p+3, 6p+1, 6p,…, 6k+6, 6k+5, 6k+3, 
6k+1 and 6, 5, 3, 1, 6p+5, 6p+3, 6p+1, 6p, …, 6k+6, 6k+5, 6k+3, 6k+1 are maximum paths 
between r and 6k+1, respectively. By our argument above, dd4-(6k+1) = 4(p-k) + 2, dd4-(6k+2) = 4(p-
k) + 7, dd4-(6k+4) = 4(p-k) + 6, dd4-(6k+6) = 4(p-k) + 5, dd6-(6k+1) = 4(p-k) + 3, dd6-(6k+2) = 4(p-k) + 2, 
dd6-(6k+4) = 4(p-k) + 1 and dd6-(6k+6) = 4(p-k). If k ≥ [p/2] then the maximum paths of Theorem A 
completes our argument.                               
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Fig. 1. A Chain of Hexagons. 
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Fig.2. A Polyhex Armchair Nanotube with Exactly One Row and p Hexagons. 
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Fig. 3. A Chain of Rhombs. 
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Fig. 4. The TUC4C8(R) Nanotube with Exactly One Row. 

 
 
Corollary. If T is an armchair polyhex nanotube then we have: 

⎪⎩

⎪
⎨
⎧

/+
+=

p|267)-60pp(54p
p|234)-30p2p(27p)( 2

2
Tdd  

 
Theorem C. Suppose G is the graph of Figure 3. Then the Detour matrix of G is as follows:  

 4j+1 4j+2, 4j+3 4j+4 
4i+1 3(j-i) 3(j-i)+3 3(j-i)+2

4i+2, 4i+3 3(j-i)+1 3(j-i)+4 3(j-i)+3 
4i+4 3(j-i)+1 3(j-i)+4 3(j-i)+3 

 
Proof. We first compute the length of a maximum path between the vertex labelled 4i+1 and a 
vertex of the (k+1)th rhomb of G. To do this, it is enough to compute the length of a maximum 
path between 4i+1 and u = 4k+1, v = 4k+2 and w = 4k+4, Figure 3. Then we can see that the 
following are maximum path between, 4i+1 and x, x ∈ {u, v, w}: 
4i+1-u: 4i+1, 4i+2, 4i+4,…, 4k+1, 
4i+1-v: 4i+1, 4i+2, 4i+4,…, 4k+1, 4k+2,  
4i+1-w: 4i+1, 4i+2, 4i+4, 4…, 4k+1, 4k+2, 4k+4. 
 Then dd(4i+1)u = 3(k-i), dd(4i+1)v = 3(k-i)+3 and dd(4i+1)w = 3(k-i)+2. On the other hand, the 
following are maximum path between, 4i+2 and x, x ∈ {u, v, w}: 
4i+2-u: 4i+2, 4i+1, 4i+3, 4i+4,…, 4k+1, 
4i+2-v: 4i+2, 4i+1, 4i+3, 4i+4,…, 4k+1, 4k+2,  
4i+2-w: 4i+2, 4i+1, 4i+3, 4i+4, 4…, 4k+1, 4k+2, 4k+4. 
 So dd(4i+2)u = 3(k-i)+1, dd(4i+2)v = 3(k-i)+4 and dd(4i+2)w = 3(k-i)+3. Finally, the following 
are maximum path between, 4i+4 and x, x ∈ {u, v, w}: 
4i+4-u: 4i+4,…, 4k+1, 
4i+4-v: 4i+4,…, 4k+1, 4k+2,  
4i+4-w: 4i+4, …, 4k+1, 4k+2, 4k+4. 
Therefore, dd(4i+4)u = 3(k-i)-2, dd(4i+4)v = 3(k-i)+1 and dd(4i+4)w = 3(k-i). This completes the proof.                               

 
 
Corollary. If G is the graph shown in figure 3 then ).12(8)( 2 −+= pppGdd  
 
Theorem D. Suppose H is a TUC4C8(R) nanotube with exactly one row. Then the Detour index 
of H is as follows:  

⎪⎩

⎪
⎨
⎧

+
/+= .
p|28)-5p2p(9p
p|215)-10pp(18p)( 2

2
Tdd  

Proof. We first compute the length of a maximum path between vertices 1 and 2 with u = 4k+1 
and v = 4k+2, Figure 4. We have the following four maximum paths between these vertices: 
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1-u: 1,4p+4, 4p+3, 4p+1,…, 4k+4,4k+3,4k+1, 
1-v: 1,4p+4, 4p+3, 4p+1,…, 4k+4, 4k+3,4k+1,4k+2,  
2-u: 2,4,3,1,4p+4, 4p+3,…, 4k+4,4k+3,4k+1, 
2-v: 2,4,3,1,4p+4, 4p+3,…, 4k+4,4k+3,4k+1, 4k+2. 
 
 
 
 If p is odd then we have the following values for the length of a maximum path between 
1 and x: 

 2 3,4 5 … 4i+2 4i+3,4i+
4 

4i+5 … 

1 3p-1 3p 3p-3 … 3(p-i)-1 3(p-i) 3(p-i)-
3 

… 

 4t+2 4t+3,4t+4 4t+5 … 4j+2 4j+3, 
4j+4

4j+5 … 

1 (3p+1)/2 (3p+5)/2 (3p+3)/2 … 3j+1 3j+4 3j+3 … 
 
where t = (p-3)/2. On the other hand, 

 1 2,5 4 … 4i+2 4i+3,4i+
4 

4i+5 … 

3 3p 3p-1 3p … 3(p-i) 3(p-i)+1 3(p-i)-
3 

… 

 4t+2 4t+3,4t+4 4t+5 … 4j+2 4j+3, 
4j+4

4j+5 … 

3 (3p-7)/2 (3p-1)/2 (3p-3)/2 … 3j+1 3j+4 3j+3 … 
 
Using these and similar calculation for the case of p even, we conclude the result.                               
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