COMPUTING BIPARTITE EDGE FRUSTRATION OF SOME NANOTUBES

Masoumeh Ghojavand, Ali Reza Ashrafi*
Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan 87317-51167, I. R. Iran

Abstract

The smallest number of edges that have to be deleted from a molecular graph G to obtain a bipartite spanning subgraph is called the bipartite edge frustration of G , denoted by $\varphi(\mathrm{G})$. In this paper this number is computed for some important classes of nanotubes.

(Received September 12, 2008; accepted September 22, 2008)
Keywords: Bipartite edge frustration, polyhex nanotube, $\mathrm{C}_{4} \mathrm{C}_{8}$ nanotube, $\mathrm{C}_{5} \mathrm{C}_{7}$ nanotube.

1. Introduction

Let $G=(V, E)$ be a simple graph, a graph without multiple edges and loops. A subgraph S of G is a graph whose set of vertices and set of edges are all subsets of G. A spanning subgraph is a subgraph that contains all the vertices of the original graph. The graph G is called bipartite if the vertex set V can be partitioned into two disjoint subsets V_{1} and V_{2} such that all edges of G have one endpoint in V_{1} and the other in V_{2}. Bipartite edge frustration of a graph G, denoted by $\varphi(\mathrm{G})$, is the minimum number of edges that need to be deleted to obtain a bipartite spanning subgraph.

It is easy to see that $\varphi(\mathrm{G})$ is a topological index and G is bipartite if and only if $\varphi(\mathrm{G})=0$. Thus $\varphi(\mathrm{G})$ is a measure of bipartivity. It is a well-known fact that a graph G is bipartite if and only if G does not have odd cycles. Holme, Liljeros and Edling introduced the edge frustration as a measure in the context of complex network, [8].

In $[5,6]$ Fajtlowicz claimed that the chemical stability of fullerenes is related to the minimum number of vertices/edges that need to be deleted to make a fullerene graph bipartite. We mention here that before publishing the mentioned papers of Fajtlowicz, Schmalz et al. [10] observed that the isolated pentagon fullerenes (IPR fullerenes) have the best stability. Doslic [1], presented some computational results to confirm this relationship. So it is natural to ask about relationship between the degree of non-bipartivity of nanotubes and their stability.

Throughout this paper all graphs considered are finite and simple. Our notation is standard and taken mainly from [7,9]. We encourage the reader to consult papers by Doslic [1-4] for background material and more information on the problem. Our main results are the following two theorems:

Theorem 1. Suppose $E=T U C_{4} C_{8}(R)[p, q]$, Figure 1, and $F=T U C_{4} C_{8}(S)[p, q]$, Figure 2, are $\mathrm{C}_{4} \mathrm{C}_{8}$ nanotubes in which p and q are the number of rhombs and squares in each row and column, respectively. Then $\varphi(F)=0$ and

$$
\varphi(E)= \begin{cases}0 & 2 \mid p \\ q & 2 \nmid p\end{cases}
$$

Theorem 2. Suppose $\mathrm{A}=\mathrm{HC}_{5} \mathrm{C}_{7}[\mathrm{r}, \mathrm{t}], \mathrm{B}=\mathrm{VC}_{5} \mathrm{C}_{7}[\mathrm{r}, \mathrm{t}], \mathrm{C}=\mathrm{SC}_{5} \mathrm{C}_{7}[\mathrm{r}, \mathrm{t}]$ and $\mathrm{D}=\mathrm{HAC}_{5} \mathrm{C}_{7}[\mathrm{r}, \mathrm{t}]$ are $\mathrm{C}_{5} \mathrm{C}_{7}$ nanotubes, where 2 r is the number of pentagons in each period and t is the number of periods, Figures 3-7. Then $\varphi(B)=\varphi(C)=\varphi(D)=2 r t$ and we have:

[^0]\[

\varphi(A)=\left\{$$
\begin{array}{cc}
2 r t-\frac{r}{2} & 2 \left\lvert\, \frac{r}{2}\right. \\
2 r t-\frac{r}{2}+1 & 2 \nmid \frac{r}{2}
\end{array}
$$\right.
\]

We encourage the reader to consult papers by Diudea and his co-author for some background material as well as basic computational methods on mathematical properties of nanomaterials, [11-13].

2. Results and discussion

In this section the edge frustration number of five infinite class of nanotubes containing $\mathrm{TUC}_{4} \mathrm{C}_{8}(\mathrm{R})[\mathrm{p}, \mathrm{q}], \quad \mathrm{TUC}_{4} \mathrm{C}_{8}(\mathrm{~S})[\mathrm{p}, \mathrm{q}], \mathrm{HC}_{5} \mathrm{C}_{7}[\mathrm{r}, \mathrm{t}], \mathrm{VC}_{5} \mathrm{C}_{7}[\mathrm{r}, \mathrm{t}], \mathrm{SC}_{5} \mathrm{C}_{7}[\mathrm{r}, \mathrm{t}]$ and $\mathrm{HAC}_{5} \mathrm{C}_{7}[\mathrm{r}, \mathrm{t}]$ are computed. At first, we compute $\varphi\left(\mathrm{TUC}_{4} \mathrm{C}_{8}(\mathrm{R})\right)$, Figure 1. If p is even then obviousely the molecular garph of $\mathrm{TUC}_{4} \mathrm{C}_{8}(\mathrm{R})[\mathrm{p}, \mathrm{q}]$ is bipartite and so $\varphi\left(\mathrm{TUC}_{4} \mathrm{C}_{8}(\mathrm{R})\right)=0$. Suppose p is odd. Then E has a cycle of length 3 p and so it is not bipartite. We notice that the subgraph H constructed from G by deleting edges $\mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{q}}$, Figure 1, is biparetite. This implies that $\varphi\left(\mathrm{TUC}_{4} \mathrm{C}_{8}(\mathrm{R})\right) \leq \mathrm{q}$. On the other hand, it is clear that we cannot find less that q edges such that the graph constructed from G by deleting them, is bipartite. Thus $\varphi\left(\mathrm{TUC}_{4} \mathrm{C}_{8}(\mathrm{R})\right)=\mathrm{q}$.

Fig. 1. The 2-dimensional Lattice of $T U C_{4} C_{8}(R)[p, q]$.

In Figure 2, a 2 -colouring of the graph $\mathrm{TUC}_{4} \mathrm{C}_{8}(\mathrm{~S})[\mathrm{p}, \mathrm{q}]$ is presented and so $\varphi\left(\mathrm{TUC}_{4} \mathrm{C}_{8}(\mathrm{~S})\right)=0$.

Fig. 2. The 2-dimensional Lattice of $T U C_{4} C_{8}(S)[p, q]$.

We now consider the $\mathrm{HC}_{5} \mathrm{C}_{7}[\mathrm{r}, \mathrm{t}]$ nanotube constructed from t copies of the graph L depicted in Figure 3. Obviously r is even. We first consider the case that $r / 2$ is even. In Figure 3, a 2-dimensional representation of this graph is depicted. In this case, the odd length cycles have exactly 5 and 7 edges. Therefore, we must deleted at least one edge from each pentagon and heptagon. To compute $\varphi\left(\mathrm{HC}_{5} \mathrm{C}_{7}[\mathrm{r}, \mathrm{t}]\right)$, we must delete the common edges between all pentagon pentagon and heptagon - heptagon of the molecular graph of $\mathrm{HC}_{5} \mathrm{C}_{7}[\mathrm{r}, \mathrm{t}]$ nanotube. From Figure 4, one can see that there are rt edges between pentagon-pentagon and $\mathrm{tr} / 2+(\mathrm{t}-1) \mathrm{r} / 2$ edges between heptagon - heptagon of the graph. Therefore, $\varphi\left(\mathrm{HC}_{5} \mathrm{C}_{7}[\mathrm{r}, \mathrm{t}]\right)=2 \mathrm{rt}-\mathrm{r} / 2$.

Fig. 3. The Graph L.

Fig. 4. The 2-Dimensional Lattice of $\mathrm{HC}_{5} \mathrm{C}_{7}[r, t]$ when $r / 2$ is even.

We now assume that $\mathrm{r} / 2$ is odd. In this case there are other odd cycles of length $5 \mathrm{r} / 2$. To delete these cycles, we must change our algorithm. In Figure 5, our deletion algorithm is depicted. By this figure, one can prove $\varphi\left(\mathrm{HC}_{5} \mathrm{C}_{7}[\mathrm{r}, \mathrm{t}]\right)=2 \mathrm{rt}-\mathrm{r} / 2+1$.

t

Fig. 5. The 2-Dimensional Lattice of $\mathrm{HC}_{5} \mathrm{C}_{7}[r, t]$ when $r / 2$ is Odd .
Considet the molecular graph of $\mathrm{VC}_{5} \mathrm{C}_{7}[\mathrm{r}, \mathrm{t}]$ nanotube. The only odd cycles of this graph are pentagons and heptagons. Using a similar method as in $\mathrm{HC}_{5} \mathrm{C}_{7}[\mathrm{r}, \mathrm{t}]$, we delete edges between adjacent pentagons and adjacent heptagons to construct a bipartite graph. From Figure 6, one can see that $\varphi\left(\mathrm{VC}_{5} \mathrm{C}_{7}[\mathrm{r}, \mathrm{t}]\right)=\mathrm{rt}+\mathrm{rt}=2 \mathrm{rt}$.

Fig. 6. The 2-dimensional Lattice of $V C_{5} C_{7}[r, t]$.

Finally, we consider the molecular graph of $\mathrm{SC}_{5} \mathrm{C}_{7}[\mathrm{r}, \mathrm{t}]$ and $\mathrm{HAC}_{5} \mathrm{C}_{7}[\mathrm{r}, \mathrm{t}]$. These molecular graphs have exactly three types of odd cycles containing pentagons, heptagons and cycles of a lengths j . It is possible to choose edges e_{i} 's for deletion such that e_{i} 's are edges of pentagons and
heptagons, see Figures 7,8. Therefore, $\varphi\left(\mathrm{SC}_{5} \mathrm{C}_{7}[\mathrm{r}, \mathrm{t}]\right)=\varphi\left(\mathrm{HAC}_{5} \mathrm{C}_{7}[\mathrm{r}, \mathrm{t}]\right)=2 \mathrm{rt}$.

Fig. 7. The 2-dimensional Lattice of $S C_{5} C_{7}[r, t]$.
1

Fig. 8.The 2-dimensional Lattice of $\mathrm{HAC}_{5} \mathrm{C}_{7}[r, t]$.

Acknowledgement

This research was in part supported by a grant from the Center of Excellence of Algebraic Methods and Applications of Isfahan University of Technology.

References

[1] T. Doslic, Chem. Phys. Lett. 412, 336 (2005).
[2] T. Doslic, D Vukicevic, Discrete Applied Mathematics 155, 1294 (2007).
[3] T. Doslic, J. Math. Chem. 31, 187 (2002).
[4] T. Doslic, Graph Theory Notes NY XLVI, 49 (2004).
[5] S. Fajtlowicz, C. E. Larson, Graph-theoretic independence as a predictor of fullerene stability, Chem. Phys. Lett., 377 (2003) 485-490.
[6] S. Fajtlowicz, http://www.math.uh.edu/~clarson/\#fajt.
[7] P. W. Fowler, D. E. Manolopoulos, An Atlas of Fullerenes, Clarendon Press, Oxford, 1995.
[8] P. Holme, F. Liljeros, G.R. Edling, B.J. Kim, Phys. Rev. E 68, 056107 (2003).
[9] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969.
[10] T. G. Schmalz, W. A. Seitz, D. J. Klein, G. E. Hite, Chem. Phys. Lett. 130, 203 (1986).
[11] M. V. Diudea, MATCH Commun. Math. Comput. Chem. 45, 109 (2002).
[12] M. V. Diudea, P. E. John, MATCH Commun. Math. Comput. Chem. 44, 103 (2001).
[13] M. V. Diudea, M. Stefu, B. Pârv, P. E. John, Croat Chem Acta 77, 111 (2004).

[^0]: * Corresponding author: alir.ashrafi@gmail.com

