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Hetero fullerenes are fullerenes where some of the carbon atoms are replaced by other 
atoms. Fripertinger applied SYMMETRICA to write some codes for computing the 
number of C60-kBk molecules, where B is a hetero-atom such as Si. (see H. Fripertinger, 
MATCH Commun. Math. Comput. Chem. 33, 121 (1996)) In this paper, the numbers of 
all C12n-kBk hetero-fullerenes are computed, where C12n is an infinite family of fullerenes. 
We apply the computer algebra system GAP to compute the number of permutational 
isomers of hetero fullerenes of the C60 fullerene with Ih point group symmetry.  
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1. Introduction 
 
Carbon exists in several forms in nature. One is the so-called fullerene which was 

discovered for the first time in 1985.1 Fullerenes are carbon-cage molecules in which a large 
number of carbon (C) atoms are bonded in a nearly spherically symmetric configuration. 
Fullerenes are molecules in the form of cage-like polyhedra, consisting solely of carbon atoms. 
Fullerenes Cn can be drawn for n = 20 and for all even n ≥ 24. They have n carbon atoms, 3n/2 
bonds, 12 pentagonal and n/2-10 hexagonal faces. The most important member of the family of 
fullerenes is C60.2 Heterofullerenes are fullerene molecules in which one or more carbon atoms 
are replaced by heteroatoms such as boron or nitrogen, whose formation is a kind of “on-ball” 
doping of the fullerene cage.   

Detecting symmetry of molecules is a well-studied problem with applications in a large 
number of areas. Randic3,4 and then Balasubramanian5-11 considered the Euclidean matrix of a 
chemical graph to find its symmetry. Here the Euclidean matrix of a molecular graph G is a 
matrix D(G) = [dij], where for i ≠ j, dij is the Euclidean distance between the nuclei i and j. In this 
matrix dii can be taken as zero if all the nuclei are equivalent. Otherwise, one may introduce 
different weights for different nuclei.  

Suppose σ is a permutation on n atoms of the molecule under consideration. Then the 
permutation matrix Pσ is defines as Pσ = [xij], where xij = 1 if i = σ(j) and 0 otherwise. It is easy to 
see that PσPτ = Pστ, for any two permutations σ and τ on n objects, and so the set of all n × n 
permutation matrices is a group isomorphic to the symmetric group Sn on n symbols. It is a well-
known fact that a permutation σ of the vertices of a graph G belongs to its automorphism group if 
it satisfies Pσ tAPσ = A, where A is the adjacency matrix of G. On the other hand, it is well-
known fact that for computing the symmetry of a molecule, it is sufficient to solve the matrix 
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equation PtEP = E, where E is the Euclidean matrix of the molecule under consideration and P 
varies on the set of all permutation matrices with the same dimension as E.  

Ashrafi and his co autors12-15 introduced some algorithms for computing the symmetry of 
molecules and applied them to compute the symmetry of some big fullerenes. We notice that for 
computing the number of isomers of a given fullerene molecule, we need to an efficient method 
for computing symmetry of fullerenes. Fripertinger16 computed the symmetry of some fullerenes 
and then applied SYMMETRICA17 to calculate the number of C60HkCl60-k molecules and 
Balasubramanian11 computed the number of C60H36 isomers.  

Throughout this paper, our notation is standard and taken mainly from the standard book 
of the theory of graphs. 

 
 
2. Main results 
 
Groups are often used to describe symmetries of objects. This is formalized by the notion 

of a group action. Let G be a group and X a nonempty set. An action of G on X is denoted by GX 
and X is called a G-set. It induces a group homomorphism φ from G into the symmetric group SX 
on X, where  φ(g)x = gx for all x ∈ X. The orbit of x will be indicated as xG and defines as the set 
of all φ (g)x, g ∈ G. The set of all G-orbits will be denoted by G\\X := {xG | x ∈ X}. Suppose g is 
a permutation of n symbols with exactly  λ1 orbits of size 1, λ2 orbits of size 2, …, and λn orbits 
of size n. Then the cycle type of g is defined as 1λ1 2λ2… nλn. 

Enumeration of chemical compounds has been accomplished by various methods. The 
Polya-Redfield theorem has been a standard method for combinatorial enumerations of graphs, 
polyhedra, chemical compounds, and so forth. Combinatorial enumerations have found a wide-
ranging application in chemistry, since chemical structural formulas can be regarded as graphs or 
three-dimensional objects.   

Denote by Cm,n the set of all functions f: {1, 2, …, m} →{x1, x2, ..., xn}.The action of 
p∈ Sm induced on Cm,n is defined by -1

,ˆ ( ) ,  .m np f fop f C= ∈  Treating the colors x1, x2, …, 
xn that comprise the range of f ∈ Cm,n as, independent variables the weight of f is 

W(f)=
1

( )
m

i

f i
=
∏ . Evidently, w(f) is a monomial of (total) degree m. Suppose G is a permutation 

group of degree m, Ĝ ={ p̂ :p∈G}, p̂  is as defined above. Let p1,p2,…,pt be the distinct orbits 

of Ĝ . The weight of pi is the common value of w(f), f∈pi. The sum of the weights of the orbits 
is the pattern inventory 

WG(x1,x2,…,xn)=
1

( )
t

i
i

w p
=
∑ .  

Theorem.1 (Pólya's Theorem18) If G is a subgroup of Sm then the pattern inventory for 
the orbits of Cm,n modula Ĝ  is  

WG(x1,x2,…,xn)= ∑ ∈Gp
pC

m
pCpC mMMM

G
)()(

2
)(

1 ...
||

1
21 , 

where Mk=x1
k+x2

k+…+xn
k, the kth power sum of the x,s, and (C1(p),…,Cm(p)) is the cycle type of 

the permutation p.  
We now introduce the notion of cycle index. Let G be a permutation group. The cycleindex of G 
acting on X is the polynomial Z(G, X) over Q in terms of in determinates x1, x2, …, xt, t = |X|, 

defined by ( )
( ) 1

1 Z(G, X)= | |
| |

i ct C g
iC Conj G iC x

G ∈ =∑ ∏ , where Conj(G) is the set of all 

conjugacy classes C of G with representatives gC ∈ C.  
The dihedral group Dn is the symmetry group of an n-sided regular polygon for n > 1. 

These groups are one of the most important classes of finite groups currently applicable in 
chemistry. For example D3, D4, D5 and D6 point groups are dihedral groups. One group 
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presentation for Dn is <x,y | xn = y2 = e, yxy = x-1>. This means that Dn is generated by a two 
elements set {x,y} with the condition xn = y2 = 1 and yxy = x-1. In this section, an infinite class 
C12n of fullerene molecules with exactly 12n carbon atoms and symmetry group D24 is 
constructed, Figure 1. To compute the number of isomers of these fullerenes, we first compute a 
permutation representation for the symmetry group of these fullerenes.   
Consider the Graph of Fullerene C12n, Figure 1. From Figure 1, one can see that the generators of 
this group are as follows: 
 
σ=(1,12n-5)(2,12n-4)(3,12n-3)...(12n-24,12n-18)(12n-22,12n-19)(12n-21,12n-20),

τ=(1,12n-5,2,12n,3,12n-1,4,12n-2,5,12n-3,6,12n-4)...(12n-29,12n-25,12n-26,12n-18,12n-20,12n-19,

12n-22,12n-21,12n-24,12n-23,12n-28,12n-27).
 

Since σ2 = τ10 = identity and σ-1τσ = τ-1, the symmetry group G of these fullerenes is 
isomorphic to the dihedral group of order 24. In Table 1, the cycle types of elements of G are 
computed. Thus the cycle index of G is computed as Z(G,X) = (x1

12n + 6x1
2n x2

5n + 2x6
2n + 2x3

4n + 
7x2

6n + 4x12
n + 2x4

3n) / 24 . But from the cycle indices one can compute the number of different 
colourings using k colours via Pólya-theory by replacing each variable xi in the cycle index by 1 
+ xi.  

In what follows we prepare a GAP program to compute the number of hetero fullerenes 
for C12n. We mention here that our computations of symmetry properties and cycle indices of 
fullerenes were carried out with the use of GAP19,20. This software was constructed by the GAP 
team in Aachen. In Table 3, we apply this program to compute the number of hetero fullerenes 
for the case of n = 3.  

 
 

Table 1. Cycle Types of Elements of G. 
 

Fullerene Cycle type #Permutations 
120n 1 

12n29n 5 
210n 6 
102n 4 

C12n 

54n 4 
 

We now present a GAP program to compute the numbers of different fullerene molecules C12n-

kBk, for large n.  
Program: A Gap Program for Counting the Number of Hetero Fullerene for C12n  
f:=function(n) 
   local s,i,f,x,t,tt,g; 
     Print("Number of vertices is: ",10*n,"\n"); 
       x:=Indeterminate(Rationals,"x"); 
f:=((1+x)^(12*n)+6*((1+x)^(2*n))*((1+x^2)^(5*n))+2*((1+x^6)^(2*n))+2*((1+x^3)^       .       
(4*n))+7*((1+x^2)^(6*n))+4*((1+x^(12))^n)+2*((1+x^4)^(3*n)))/24; 
g:=((1+x)^(12*n)+2*((1+x^6)^(2*n))+2*((1+x^3)^(4*n))+7*((1+x^2)^(6*n)))/12; 
     t:=CoefficientsOfLaurentPolynomial(f); 
       tt:=CoefficientsOfLaurentPolynomial(g); 
             Print("\n"); 
                Print("\n"); 
                   Print("Number of Molecules for Symmetry Group =","\n"); 
                      for i in t[1] do 
                         Print(i,"\n"); 
                     od; 
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              Print("Number of  Molecules for Rotation Group=","\n"); 
                 for i in tt[1] do 
                    Print(i,"\n"); 
                 od; 
      return;  
end; 
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Fig. 1. The Schlegel diagram of C12n. 
 

To investigate the efficiency of this program, we consider the Buckminster fullerene C24, Figure 
2. Fripertinger16 computed the cycle indices for the actions of the rotational group R and 
symmetry group S on the set of all vertices as follows:  

4 8 12 24
6 3 2 1

2 6 4 10
12 4 1 2

1Z(G,R) =  (2x  + 2x  +4x  + x  ),
12

1 1Z(G,S) = ( , )  (4x + 2x  + 6x x ).
2 24

Z G R +

 

 
Fig 2. The Fullerene C24 
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We apply these cycle indices program to compute the number of permutational isomers of this 
fullerene. Our calculations are given in Table 2. Fripertinger in the mentioned paper computed 
these cycle indices and one can see that our calculations have the same results.  
 
 

Table 2. Number of C24-kBk molecules. 
 

 k Number of C24-kBk molecules 
For Symmetry Group 

Number of C24-kBk molecules For 
Rotational Group 

0,24 
1,23 
2,22 
3,21 
4,20 
5,19 
6,18 
7,17 
8,16 
9,15 

10,14 
11,13 
12,12 

1 
2 

19 
96 

489 
1826 
5775 
14586 
31034 
54814 
82358 

104468 
113434 

1 
2 

30 
170 
924 

3542 
11350 
28842 
61578 

108968 
163900 
208012 
225898 

 
 

Table 3. Number of C36-kBk molecules. 
 

k Number of C36-kBk molecules 
For Symmetry Group 

Number of C36-kBk molecules For 
Rotational Group 

0,36 
1,35 
2,34 
3,33 
4,32 
5,31 
6,30 
7,29 
8,28 
9,27 

10,26 
11,25 
12,24 
13,23 
14,22 
15,21 
16,20 
17,19 
18,18 

1 
3 

39 
326 

2586 
15942 
81966 

349050 
1264188 
3927135 

10601220 
25045566 
52176447 
96307470 

158220312 
232035188 
304552704 
358278360 
378195662 

1 
3 

63 
597 

4998 
31416 

162804 
695640 

2523480 
7845310 
21187236 
50067108 

104317389 
192565800 
316376664 
463992012 
609014868 
716458050 
756289794 

 
 

k Number of C120-kBk molecules For 
Symmetry Group 

Number of C120-kBk molecules For 
Rotational Group 

0,120 
1,119 
2,118 

1 
10 

375 

1 
10 

630 
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k Number of C120-kBk molecules For 
Symmetry Group 

Number of C120-kBk molecules For 
Rotational Group 

3,117 
4,116 
5,115 
6,114 
7,113 
8,112 
9,111 

10,110 
11,109 
12,108 
13,107 
14,106 
15,105 
16,104 
17,103 
18,102 
19, 101 
20,100 
21,99 
22,98 
23,97 
24,96 
25,95 
26,94 
27,93 
28,92 
29,91 
30,90 
31,89 
32,88 
33,87 
34,86 
35,85 
36,84 
37,83 
38,82 
39,81 
40,80 
41,79 
42,78 
43,77 
44,76 
45,75 
46,74 
47,73 
48,72 
49,71 
50,70 
51,69 
52,68 
53,67 
54,66 
55,65 

12240 
346685 

7965002 
152341115 

2479309010 
35014043570 

435703858670 
4836224403394 

48361919180380 
439286444004870 
3649453395393660 

27892241959149490 
197105150105626846 

1293502479242206510 
7913191454130806070 

45281039545077849185 
243087684880272228510 
1227592806166512104239 
5845680023633471951780 

26305560094190562465525 
112084560375001129367550 
453008431462898576452185 

1739552376710063098311576 
6356056760852287808676420 

22128493907760169146532080 
73498211907212120781217540 
233166741221592245379924920 
707272448369960572713324900 

2053371624296066328287559960 
5710939830067211214797599070 

15229172880168954526375705490 
38968765899239883848733028535 
95751824780964276376934039586 

226080697399461660350035058325 
513264285987910862161937884970 

1121077256236673061514483529395 
2357136795164172436988256836250 
4773202010207294018481937229034 
9313564897965238184159555569620 

17518372069981957205544137225070 
31777512126943651111560594292740 
55610646222150939011525733045270 
93920202508521017951911152509564 
153130764959544468296308959721150 
241099502276728780769408085318900 
366672159712524114912229812496220 
538783581618401737750846454890950 
765072685898129359213461492059233 

1050099764958215551766088716711890 
1393401611194554037375002296809615 
1787760557759049201897170212061430 
2218147358701041361871100597953965 
2661776830441248499917190861332718 

23410 
685580 

15881502 
304415550 

4957297410 
70022110370 

871382724160 
9672351405780 

96723482198980 
878571659193250 
7298902772092260 

55784471411992500 
394210263052825920 

2587004852775979230 
15826382619616402470 
90562078331984665050 

486175367841198609210 
2455185607642032825924 

11691360036181207757310 
52611120163015329331650 

224169120693735271768350 
906016862804663028874905 

3479104753166771417844792 
12712113521189294184252840 
44256987814500382896504760 
146996423812457818624330480 
466333482439489255754397640 

1414544896733148439148314600 
4106743248580018284546792120 

11421879660113263125448347390 
30458345760301802277440675130 
77937531798419543470601318070 

191503649561830323224309508342 
452161394798766580547797503460 

1026528571975576957824001418590 
2242154512472971916469495764590 
4714273590327784598483890594450 
9546404020413766257168445627578 

18627129795929295242782082421540 
35036744139962250471413267411340 
63555024253885004034342852647580 
111221292444298765316763412659240 
187840405017037900812620024271468 
306261529919083547575052586163500 
482199004553450670448660465431300 
733344319425039582337907631148620 

1077567163236792824778128999280150 
1530145371796245841468948664002650 
2100199529916415819273466210856210 
2786803222389090262495164078431940 
3575521115518078020330563887016370 
4436294717402059817301853188434610 
5323553660882471719158839565113262 



275 
 

k Number of C120-kBk molecules For 
Symmetry Group 

Number of C120-kBk molecules For 
Rotational Group 

56,64 
57,63 
58,62 
59,61 
60,60 

3089562392476448211591022509606690 
3468982335412151547130023921742540 
3768032536740784744210961780843000 
3959627411490315775842049702360720 
4025621201681820952805598095553184

6179124784952869020241240337555170 
6937964670824273919705777704609160 
7536065073481538979546102009461680 
7919254822980600213433863895194480 
8051242403363610285978790514069148
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