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The PI polynomial of a molecular graph G is defined as ∑ −+ )(|)(| eNGExA , where N(e) is 
the number of edges parallel to e, |)(|
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all edges of G. In this paper, the PI polynomial of the Zig-Zag Polyhex Nanotubes is 
computed. 
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1. Introduction 
 
Let G be a graph with vertex and edge sets V(G) and E(G), respectively. As usual, the 

distance between the vertices u and v of G is denoted by d(u, v) and it is defined as the number of 
edges in a minimal path connecting the vertices u and v. 

A topological index is a real number related to a graph. It must be a structural invariant, 
i.e., it is fixed by any automorphism of the graph. There are several topological indices have been 
defined and many of them have found applications as means to model chemical, pharmaceutical 
and other properties of molecules. 

The Wiener index W is the first topological index to be used in chemistry. It was 
introduced in 1947 by Harold Wiener, as the path number for characterization of alkanes, [15]. In 
a graph theoretical language, the Wiener index is equal to the count of all shortest distances in a 
graph. For a survey in this topic we encourage the reader to consult [8,15]. 

Let G be a graph and f = uv an edge of G. nfu(f|G) denotes the number of edges lying 
closer to the vertex u than the vertex v, and nfv(f|G) is the number of edges lying closer to the 
vertex v than the vertex u. The Padmakar-Ivan (PI) index of a graph G is defined as PI(G) = ∑[ 
nfu(f|G)+ nfv(f|G)] where summation goes over all edges of G see for details [7,9-11]. On can see 
that, for every f = uv ∈ E(G) we define PI(f) = nfu(f|G) + nfv(f|G) and N(f) = |E(G)| - PI(f), 
Therefore ∑

∈
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In [6], Ashrafi, Manoochehrian and Yousefi-Azari. defined a new polynomial and they 
named the Padmakar-Ivan polynomial. They abbreviated this new polynomial as PI(G,x), for a 
molecular graph G and investigate some of the elementary properties of this polynomial. 
Definition. Let G be a connected graph and u, v be vertices of G. We define: 
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Then PI polynomial of G is defined as ∑
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In a series of papers [1-5], Ashrafi and Loghman computed PI index of some nanotubes 

and nanotori. In [12] the authors computed polynomial of some benzenoid graphs. Here we 
continue this progress to compute the PI polynomial of the zig-zag polyhex nanotubes. Our 
notation is standard and mainly taken from [13,14]. Throughout this paper T = TUHC6[2p,q] 
denotes an arbitrary zig-zag polyhex nanotube, see Figure 1. 

 

 
 

Fig. 1: Zig-zag TUHC6[20,q]. 
 

2. PI Polynomial of TUHC6[2p,q] 
 
In this section, the PI polynomial of the graph T = TUHC6[2p,q] were computed. From 

Figures 1 and 2, it is easy to see that |E(T)| = p(3q-1). In the following theorem we compute the 
PI polynomial of the molecular graph T in Figure 1. 

Theorem. The PI polynomial of zig-zag polyhex nanotube is computed as follows: 
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Proof. To compute the PI polynomial of T, it is enough to calculate N(e). To do this, we 
consider two cases: that e is horizontal or oblique edge. If e is horizontal a similar proof as 
Lemma 1 in [1] shows that N(e)=p. Also, by Lemma 2 in [1], if e is an oblique edge in the kth 

column, 1≤ k ≤ p, then N(e) =
⎩
⎨
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the oblique edge of T in the ith row and jth column. We first notice that for every i, 1≤ i ≤ q-1, 
N(Ei1) = N(Ei2) = ⋅⋅⋅ = N(Ei(2p)), Figure 2. 

 
Fig. 2. A Zig-Zag Polyhex Lattice with p=6 and q=8. 

 
Let X and Y are the set of all horizontal and oblique edges of T. It is easy to see that 

|X|=p(q-1) and |Y|=2pq. Then Since T is symmetric, we have: 
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For every e in Y, we have three cases: 
Case 1. q≥2p. In this case by Figure 2, we have: 
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Case 2. p<q<2p. In this case, we have: 
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Case 3. q≤p. In this case, we have: 
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which completes the proof. 
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Corollary. If T = TUHC6[2p,q] is a zig-zag polyhex nanotube and p,q are positive 

integer then 
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