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The interactive damping sensitivity and the resonant frequency of normal vibration and 
longitudinal vibration of an atomic force microscope (AFM) rectangular cantilever have 
been analyzed. Surface electrostatic attraction between the atoms in the tip of the probe 
and those in the surface is simulated with flexural and longitudinal contact stiffness. 
Theoretical investigation of normal and longitudinal interaction individually and both, 
have been presented as normal and longitudinal sensitivity. Also using the sensitivity 
equations the effects of material property and geometrical parameters can be specified. 
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1. Introduction 
 
The vibration of the tiny oscillators can be measured by tapping with an atomic force 

microscope (AFM). An AFM uses a tiny probe that moves slowly just above a surface. 
Electrostatic attraction or repulsion between the atoms in the tip of the probe and those in the 
surface causes the probe to move up and down, creating an image of the surface so detailed that 
individual atoms show up as bumps. Alternatively, the AFM can be used in tapping mode, literally 
bouncing off the surface. To measure the vibration of a Nano-Mechanical oscillator, the AFM 
probe moves along the length of the oscillating rod. The result is a complex bouncing interaction 
between the probe and the oscillator imagine shaking one end of a spring and watching the 
vibrations at the other end from which the frequency of vibration of the oscillator can be 
determined mathematically. To obtain atomic resolution, the AFM cantilever should not be too 
soft, and at the same time, it should have a high resonant frequency, in order to minimize 
sensitivity to vibrational noise from the building and to have a large imaging bandwidth. 
Furthermore, the resonant frequency of the cantilever can influence the imaging rate in the 
operating process. More information exists in the literature [1-5]. Dynamic responses of the AFM 
cantilever have been investigated by [6-8]. Some of researchers [9–14] have been studied the 
vibration response of an AFM cantilever for convenience without considering the interactive 
damping but Turner et al. [15] and Rabe et al. [16], have been shown the effect of damping on the 
vibration response of an AFM cantilever is very important. Chang et al. [17] have been 
investigated effect of interactive damping on sensitivity of vibration modes of rectangular AFM 
cantilevers. They found that the sensitivity of flexural mode 1 clearly decreases with increasing 
normal interactive damping coefficient and the higher damping coefficient can influence the larger 
range of βn value. They also presented two equations for normal and torsional sensitivity. Effect of 
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tip length and normal and lateral contact stiffness on the flexural vibration responses of atomic 
force microscope cantilevers have been investigated by Wu et al. [18]. They didn't consider the 
damping effects in their study. More recently Chang et al.[19] studied the sensitivity of the first 
four flexural modes of an AFM cantilever with a sidewall probe. Coupled lateral bending–
torsional vibration sensitivity of atomic force microscope cantilever have been studied by Haw-
Long Lee and Win-Jin Chang [20]. Their results showed that each mode has a different resonant 
frequency to variations in contact stiffness and each frequency increased until it eventually reached 
a constant value at very high contact stiffness. The normal and lateral interactive forces between 
the cantilever tip and the sample surface can be modeled by a set combination of a damper spring 
parallel to a dashpot in the normal direction and a similar combination in the lateral direction. 
Many researchers have studied the vibration response of an AFM cantilever, but there is no any 
investigation to consider the effects of normal and longitudinal contact stiffness both, by a set 
combination of a damper spring parallel simulation. At the current study analytical solution of 
interactive damping and normal and longitudinal contact stiffness on sensitivity of vibration modes 
of rectangular AFM cantilevers is presented. 

 
 
2. Analysis 
 
The schematic of the problem is shown in Fig.1. The cantilever has a length L, thickness 

b, width a, and tip length h. The tip interacts with the sample by a linear spring kn and dashpots Cn 
for normal interaction and for longitudinal Kl and Cl for longitudinal interaction. It is assumed that 
the atomic force microscope cantilever here is a rectangular elastic beam and the dashpots are 
assumed to create a linear viscous type of damping.  

 
2.1. Flexural vibration 
 
When the AFM cantilever tip interacts with the sample by a normal spring Kn, normal 

dashpot Cn, and longitudinal spring kl, longitudinal dashpots Cl the cantilever will vibrate flexural. 
The linear differential equation of motion for the free vibration of the cantilever beam is [21] 
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Where E is the modulus of elasticity, I is the area moment of inertia, ρ is the volume density and 
there are related to material property and A is the uniform cross-sectional area of the cantilever. 
 

 
Fig. 1. Schematic of a rectangular AFM cantilever in contact with a sample.  
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The corresponding boundary conditions are 
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The boundary condition of the probe at 0=x  is assumed fixed end; then the boundary 

conditions given by Eq. (2), (3) correspond to conditions of zero displacement and zero slope. The 
boundary conditions given by Eq. (4), (5) correspond to zero moment at x=L and the force is 
balanced between the beam and a combination of the linear tip-sample stiffness and dashpot. 
A general solution of equations. (1) to (5) is 
 

iwtexkaxkaxkaxkatxy )sinhcoshsincos(),( 4321 +++=  (6) 
 

 
where aj, j=1-4 , are constants determined from the boundary conditions, w is the angular 
frequency, k is the flexural wave number. 
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By setting Eq. (6) into Eq. (1) 
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Frequency can be shown as function of wave number  
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From the quations, (2), (3), (6) can be found: 
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From the equations (4), (6): 
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From the equations (5), (6): 
 

[ ]+−++−− )cos)(cosh()sin(sinh3
1 kLkLwickklkLEIka nn  

[ ] 0)sin)(sinh()cos(cosh3
2 =−+++− kLkLwickkLkLEIka nn          (12) 

 
 
By introducing  
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Then the characteristics equation can be found: 
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And by introducing  
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5η  = γγε sincosh4−  

                                                   6η  = γε 2
1 cos−  

                                                   7η  = γγε coscosh5  

8η  = γε 2
1 cosh−   

 
 
where γ=K×L is the normalized longitudinal wave number, βl=(Kl×L3/EI) is the normal stiffness 
ratio, βn=(Kn×L3/EI) is the normal stiffness ratio between the normal contact stiffness and that of 
the cantilever.  
If we negligible Cn, Kn 
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The longitudinal and normal sensitivity of the cantilever can be calculated from the frequency, 
which can be measured. The sensitivity of the mode of the cantilever changes significantly for 
small variations of stiffness as the cantilever crosses the sample. Differentiation of Eq. (18) with 
respect to βl yields 
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The relationship between longitudinal frequency fl and contact stiffness βl can be expressed as 
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Then the following equation can be obtained 
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Equation (18) and (21) are complex types due to the complex representation of damping. The 
absolute value of the complex quantity is used in the calculation. Eq. (21) can be expressed in 
normalized form as 
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By Setting Kl and Cl and equal to zero with neglected Kn and Cn, From the Eq. (15), the 
characteristics equation can be found: 
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The normal sensitivity of the cantilever can be calculated from the frequency, which can be 
measured. The sensitivity of the mode of the cantilever changes significantly for small variations 
of stiffness as the cantilever crosses the sample. Differentiation of Eq. (23) with respect to βn 
yields 
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The relationship between normal frequency fn and contact stiffness βl can be expressed as 
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Then the following equation is obtained 
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That equation (26) is same as presented equation, for this case in [17]. The absolute value of the 
complex quantity is used in the calculation. Eq. (26) can be expressed in normalized form as 
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With considering normal and longitudinal effects both, characteristics equation can be found as  
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For determine normal and longitudinal sensitivity the set of following equation are obtained 
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By introducing new parameters Sl and Sn as function of βl and βn for the first the effects of normal 
and longitudinal both, is considered. In the previous works parameter Sl isn't introduced and Sn is 
function of βl only. 
 

A
EI

L

d
df

S l
l

nll

ρπ

βββ

22
1

),( =                                                (34) 

 

A
EI

L

d
df

S n
n

lnn

ρπ

βββ

22
1

),( =                                               (35) 

 
 

The sensitivity parameter is also a functional of material property such as the modulus of 
elasticity and the volume density and geometrical property such as the area moment of inertia and 
cross-sectional area of the cantilever. The above equation denotes also the effects of this property. 

 
 
3. Conclusion 
 
The interactive damping and normal and longitudinal contact stiffness on sensitivity of 

vibration modes of rectangular AFM cantilevers has been investigated. The effect of damping on 
the vibration response of an AFM cantilever is significant and cannot be disregarded. Theoretical 
investigation of normal and longitudinal interaction individually and both, have been presented. 
Using the sensitivity equations the effects of material property and geometrical parameters can be 
specified.  
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